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The problem of small amplitude resonance oscillations are considered in a non- 
linear system close to its stability limit. Solution is sought in the form of series 

in terms of natural oscillations and of inducing force. The obtained equation 

which defines the dependence of natural oscillation amplitude on time is used for 
analyzing the evolution of steady motions with varying parameters. Subharmonic 

oscillations of polytropic gas, induced by a piston in a long pipe ending in a cham- 

ber is considered as an example. 

1 e Combination resonances may occur in systems that are defined by equations of the 
hydrodynamic type, when these are subjected to periodic forces. In self-excited syst- 

ems modes of beat and forced oscillations are possible; an example of this is provided 
by the combination resonances in gas discharge [l]. 

The principal resonance was considered in [2]. Combination resonances require speci- 
al investigation, since the character of oscillations and their amplitude substantially de- 

pend on the kind of resonance. 

As in [2] we consider the boundary value problem 

(1-l) ;. i &X+&p+... = sEC+c.c., ux = 0 (E = @) 

where X is the vector of small deviations of variables from their equilibrium values, 
and c. c. denotes an expression that is a complex conjugate of the preceding one. 

Real coefficients L and matrix 77 depend in the boundary condition on parameters 
h and z-coordinates, and are polynomials in II = d i 8x. The region of varia- 

of t is assumed to be bounded. The periodic perturbation of the form C L C (3) is 
proportional to the small amplitude a. It is assumed that the problem 

pox, + L,X, = 0, ux, L 0 (1.2) 

has a simple eigenvalue PO .= Yo -1 i61 0 
he becomes pure imaginary (pe = iQ, I 

(below it is called critical) which for k -= 
52, > 0); the increments ‘ys (&) of other 

eigenvalues are negative and are not small. 

When a # 0 a combination resonance occurs, if for the irreducible fraction 5 = 
n ! &where m and n are positive integers, the frequency difference p = p. - iw~ 
is small in comparison with the quantities 0 (1, t, 1 - 5). 

Qo - a% and e are independent. 
The small parameters 

YO? 
The solution of problem (1.1) is sought in the form of series in powers of the small 

quantities QEC, a!~ and their complex conjugate 

X = (QEcX,+ EEX,) + C.C. + ,., (1.3) 
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Coefficients of the series depend only on x and Xl is the eigenfunction 
of problem (1.2), which corresponds to the critical PO. 

The equation for the amplitude of oscillations Q (t) 
of series in @, e 

is also sought in the form 
and their complex conjugate 

(1.4) 

z = Q (p + ps&E + ,vzQQ -t . . .) + Q”%” (pl + . . .) -+ . . . 

where series in powers of 1 illeLand ) Q 1 ’ pp a ear in parentheses, and the series mul- 
tiplied by Q*s-i,ns s> 1, 

are omitted. 

Coefficients in (1.3) and (1.4) are determined by nonhomogeneous linear problems 
that obtain after the substitution of (1.3) and (1.4) into (1.1) , and by equating terms 
proportional to Qo@C@EO, where v = a - b + (c --d) I’ 5. 
It is sufficient to consider problems for v > 0. Solutions of such problems are fi- 
nite when v # 1, hence thezltted coefficient in (1.4) is zero. When 

v = 1 the solutions are finite for p 1 only if 

(I. 5) 

(Y.Z)s j (Y*Z)dLr = 0 

where Y is the free term of the nonhomogeneous problem, 2 is the eigenfunc- 
tion of the problem conjugate of problem (1.2) with the critical value ps; integra- 
tion is carried out over the region of variation of 5. The related coefficient of series 

(1.4), which is linear in Y is determined by (1.5). 
The equality v = 1 is satisfied when b = a - 1 + ms, c = d -i- ns 

and s >r 0. When s = 0 the last relationships are independent of numbers 

m and n which determine the type of resonance. The corresponding terms in 
(1.4) define nonresonance effects, in particular, the nonsynchronous effect of frequen- 

cy difference in (b = 0) change. The changed frequency difference is P+ (E! = 
+ d P& + . . . . 

The nonsingular case, when in the approximate equation (1.4) the quantities Pn 
= yl, + i& (n = 1, 3) and Ys are not small for h. = A, and P .-: 0 

is considered below (some particular cases are considered in Sect. 4). In practice it may 
be more convenient to determine coefficient in (1.3) and (1.4) in the form of series in 

h - h, and (0 - Q,. 

To determine p1 it is necessary to take into account in (1.1) all terms of the se- 

ries with powers ,<N:=n.+m-1; which means that at high resonance 

orders N resonance effects are negligible. This statement can be substantiated 

and refined with the use of the following estimates. 

When p+ = 0 and m<3 for the steady nonzero amplitude from (1.4) 

we obtain Q NED where x=n/(4--mm). The effects of frequency di- 

fference become equal to those of resonance when P+ - Q"; hence for the re- 

sonance region (region of forced oscillations) we have 60 N Q”. That region 
and the amplitude decreases with increasing n and m I 

For N = 1 the first term in (1.3) is the greatest and the nonsynchronous eff- 
ect is negligible Es]. 
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nor & = 2 the first term in (1.3) is the greatest in the resunance region. The non- 
synchronous effect is negligible in the determination of steady state solution, hut 

has a considerable effect on its stability outside of the resonance region (it is Shown be- 

low that outside that region Q # 0 only when m ti 1). 

For N = 3 the two terms in (1.3) are of the same order in the resonance reg- 

ion and the nonsynchronous effect is appreciable. For N > 3 the second term in 

fL3) is the greatest. 

When R& > 3 there is only a trivial steady state solution 0 = 0 (small for 

small E this means that the region of forced oscillations is absent. Periodic oscil- 

lations of small amplitude can only have frequency a; and they are stable if y+ 

< 0. The limit cycle with the square of amplitude IQ I" = -_y+ ,'I+ and 

frequency 52 = Q+ -+ f Q j2% corresponds to the beat mode (the effect of 

resonance terms on the cycle index may be determined by the ~onven~onal perturbation 

theory), The cycle is stable when Y+ > 0 and % < 0 while for Ye > 0 

and lis >, 0 small oscillations are not possible in the system, 
The indicated possibilities completely determine the behavior of the system with pa- 

rameter variation when m’> 3. 
Z To investigate resonance when m -\( 3 it is convenient to represent (1.4) 

in the form 

dRldT L (f -I- iq) {R [a (1 - io) - 
(2.1) 

Equation (2.1) was considered in [3] for q z 0 and for no = 1 it was invest- 

igated in [Z]. A qualitative investigation of (2,1) is carried out below for m == 2, 3 
First, the case of % < 0 and q > 0 is considered, 

Structure of the phase plan of Eq.(2, f) is periodic with respect to itr{; R of oer- 

iod .k /M, which implies that the number of singular points with the same 0 = 

RR + 0 is equal RL For these points from (2.1) we obtain 

fa - p)2 + 02 = fpm-s, f I‘- F2 
(2.2) 

It is convenient to consider for p > 0 instead of the two equations (2,2) only 
the one with C8 = 1 in the region (--- 00 < I_’ < co\ and use negative P 
for a - -1 s The amplitude curves are circles 8’ = Canst when m -2 
and f = COTE3t when m =3 3 (Fig. 2); curves on which the circles have verti- 
cal tangents am shown in Figs* 1 and 2 by dash lines. 
Small deviations from equilibrium are proportional to % where 

X=a-.j-(a~-Q*“, a~Re(8H/iG$)=a(~ fq-22)) (%V 

b~jalPlaR~2- 1 afl/ 8R I2 = m (1 + q2) [(2 - m) X 
(1 i- 0") - 2p (3 - m) + (4 - m> PI 
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Saddle points lie in region h < 0 and along the dash lines where b = 0. lie 
saddle-nodes. Complex focal points lie on straight lines a = 0 which intersect 
axis o at point or = -1 / 9; it can be shown with the use of results obtained 
in [4] that these focal points are unstable quantities of first multiplicity. Simple focal 

and nodal points are unstable when in Figs. 1 and 2 they lie between the straight line 
a=0 and axis o in the first and third quadrants formed by the o axis 

and the straight line CT L 01. Along that straight Y+ = 0, and in the second 
and fourth quadrants Y+ < 0; passing from the upper half-plane to the lower at 
change of parameters is only possible through an infinitely distant point and then to the 

opposite quadrant. 

When mz2 the region of focal points 
is bounded by a hyperbola with asympto- 
tes 2p=l--0[I/~*(1-t_l~~~)1’~] 

and the square of the semiaxis l/s (25 -+ 
16 / $)Q - ais. When m %= 3 

the region of focal point is bounded bv 

an ellipse (a hyperbola when ‘1 > ‘/a) 
center (rl, 2) / (1 - 4r1’) and the 
squares of semiaxes 211’ (4 4 T$ f 

&/(I - 4$)1/z and the direction of 

the major (real) axis (7q2 + 

2 + g) / (4?) where g = ]16@ 

+ (7$ + 2)W In the case 

of equilibrium fi = 0 we have in- 

stead of(U) on = o (1 + 09) 

P 
-_ 

~ 

z 
1 

0 (5 

Fig. 1 Fig. 2 

and 00 = (1 + qz’) II + CT2 - F% 

For m=2 curves 60 =3 0 are shown in Fig. 3 by thin dash lines; sad- 

dle points correspond to points of the upper curve, while nodal points correspond to po- 

ints of the lower curve, 
The infinitely distant point is unstable; its index (as well as the combined index of 

finite points) is unity. 
3, bet us consider the subdivision of the parameter plane (Figs. 3 and 4) 

Fig. 3 Fig. 4 
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into regions with constant (or slightly varying) phase structure of the plane of Eq.(2.1). 
When that subdivision is known, it is not difficult to determine the behavior of the sys- 

tem at parameter variation. 
According to Benickson’s criterion there are no limit cycles in the second and four- 

th quadrants (formed by the o -axis and the straight line o = o,), since there a 

=n(l +O1))-22RR<O. The integral curves run from infinity to one of 

the stable singular points. 

Limit cycles exist in the first and third quadrants. They comprise one or all singu- 
lar points, since the combined index of points is unity and the phase plane is periodic 

with respect to arg R. 
Steady cycles comprise unsteady points and point R = 0. The steady cycle sh- 

own in Fig. 3 ( m = 2) exists between the o&axis and the curve 14056 00 1 
(the 6001 curve that passes through an infinitely distant point is shaded). 

At the intersection of curve 14 (56) the cycle vanishes by merging with the separa- 

trices of saddle points outside (inside) the cycle. At inte.rsection with 405 the cycle 
vanishes owing to the formation on it of saddle-nodal points. At intersection of the shad- 

ed curve 6 00 1 the cycle vanishes by merging with the unsteady cycle which com- 

prises all singular points. That unstable cycle exists in region 6 o. 1 o. 36; at in- 

tersection 63 it merges with the separatrices of saddle poinkat intersection with 

3 00 I it merges with separatrices of the I? = 0 saddle point, and, then, splits in 

two unstable cycles (each of which covers only one 

at intersection 5: O) 

point). Such cycles ex- 
ist in region 3 oo loo 23; they merge with the separa- 

trices of saddle points, and at intersection with 2 00 1 they contract into focal po- 
ints. 

The case of I/s < q < 2, for oa > 0 is shown in Figs. 2 and 4, where 
point 1 in the last figure is infinitely distant. A stable limit cycle exists between the 

o- axisand curve 00405678 co 9 oo (curve 67 is shaded). At the intersec- 
tion of curves 00 4 and 00 9 (56 and 78) the cycle vanishes by mer- 

ging with the separatrices of saddle points outside (inside) the cycle. At intersection of 

405 with 8 00 9 saddle-nodal points are formed in the cycle. At intersection 

with the shaded curve 6’7 it merges with the unstable cycle which covers all singular 

points. That cycle exists in region 67; at intersection with the dash-line curve it mer- 

ges with the separatrices of saddle points. In region 23 there exist between the solid 

and the upper dash-line curve three unstable cycles (each of which covers only one 

R # 0 point). At the intersection with the dash-line curve $3 they merge 

with the separatrices of saddle points and at intersection with the solid curve 23 they 

contract into focal points. 

At transition of 11 through the value 2 points 7, 8 and 3 pass to re- 
gion o<Us; and at its transition through the value 1/g region $678325 va- 
nishes by contracting at point o = f%. 

The ends of dash-line curves in Figs.3 and 4 correspond in Figs. 1 and 2 to saddle po- 

ints that lie on straight lines 12. It can be shown [2,4] that with increased ?j the 
double cycle splits in two, and that the shaded curves lie outside region 

o < 0. 
oi ( 

The results shown in [3] obtain for 11 * 0 

It was assumed above that 7s < 0 and q > 0. 
with Io,I--+oo. 

The case of Ys < 0 
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and q<O does not need explanation. The case of YZ = 0 is considered 
below. The case T2 > 0 differs from that considered above in the direction of 
the trajectories of Eq. (2.1). 

4. Let us consider the cases of violation of some of the introduced constraints. 
It was assumed above that ?z is not small, If this is not so, the steady state sol- 

ution 0 (determined as before by (2.1) and (2.2)) is stable when Yo < fa < 0 

where Y* - es is determined by the nonsynchronous effect. 
At considerable real frequency differences Eq. (1.4), although valid, is ineffective, 

since it requires additional transformations. Let, for example, the resonance with num- 
ber t=n/m#l be considered on the basis of the equation 

dvdd-QQ,(po- io) f&p1 $- . . . 

with 5 = 1. After the substitution Q1 = 00 + Q2: where o. is the 
steady state solution of that equation, the quantity Q, is sought in the form 

Qz = Q exp iv + f (Q, e, ~1 

where j is a function periodic with respect to YZZ(p- 1) tit and Q !t) 
satisfies Eq. (1.4) with the number 5 -5: n / m. 

Expansions (1.3) and (1.4) are valid for problems whose equations and boundary con- 
ditions contain high order derivatives with respect to t and which contain nonautono- 
mous terms dependent on X that are nonlinear with respect to eand X , and non- 

harmonic with respect to explicit t. (See Sect. 5) below). The nonautonomous terms in- 

&pen&& of _x may be absent (related resonances are called parametric). 

The case in which nonautonomo&s terms contain onlv harmonics of amplitudes _ E 
and frequencies On suchthat I(oi - %)>I?%1 for ifk does not 

present difficulties. The condition of resonances is defined by m90 z nimi -f- 

1 * . + tLk@k; and the effective number is n --_ 1 ni 1 -+ . . , + 1 nk 1, 
It was assumed above that problem (1.2) has only one critical value PO* Let Pt 

be another such value ( % is small), then we have internal resonance, i. e. t there ex- 

ist relatively prime numbers mo and no for which Pi = (no / mo> PO and 

numbers m4 and n4 for which p4 zz (nd / m4) co. The simultaneous con- 

sideration of equations for Q and o, shows that approximation (1.4) is valid for 

V if m0 -!- ?zEg > 4, x. .=C X4 and Ye < Y* < 0, where 

Y* 
- Q’aE Fo’:e used 

and, if the perturbation is almost periodic, the effective num- 

bers n 
Note that all of the above is applicable to systems defined by ordinary differential 

equations. 
5. As an example, let us consider the problem for X = (6, W) 

X’ + BX’ + T =f 0, B = (~~~~ T = (0, ktu i @‘) (5.1) 

it, = wa / (1 + k) _I 5 + [(i + 410 - 11/ p = wa + XP i- . . .) 

(A = l/e (fJ - 1) 
(de’ + w)@ = 0, (q) = (f + 4)~ 2% CM Ot 
0~x_~~=1+2(~/0)sinot, a > 0, h>O 
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where the dot and the primed denote differentiation with respect to t and x re- 

spectively, and the subscripts 0 and 1 at parentheses relate to x = 0, and 

1 respectively. Problem (5.1) defines the oscillation of gas induced by a rigid pis- 
ton in a pipe with a chamber [2]. 

The substitution of coordinate y = 5 I’ 1 yields the problem 

(5.2) 
X’ - (I* / I) yX’ + BX' / 1 -j- T, = 0, T+ = (0, @’ / l+ hw) 

The subscripts 0 and 1 now relate to Y = 0 and 1. 

Solution of the linear autonomous problem is defined by the relationships 

(5.3) 

p,, = ik, k=l/,ih + ($ - lip h’)“, tg X = -a% 

X1 = (cos 6, - i sin 6), 6 = X (Y - 1) 

where X, is taken for h = U; and in this approximation the eigenfunction of the 

conjugate problem is z = XI. 

Below the quantity ‘1~ 0 is assumed to be close to the first root x = x1 of Eq. 
(5.3), and U. is selected so that internal resonances do not violate approximation (1.4) 

when 5 = Ila; such values of a do exist [2]. 

In (1.3) we have the term @E”‘Y (z); and coefficient pi is determi- 
ed by the problem for Y (it is sufficient to determine it for h = 0 and o =.= 2%). 

First, it is necessary to determine X, using the problem 

2xiX, + BX,’ = 0, (w)1 = 1, (2ixuf + w)o = 0 

whose solution is 

& = -i (sin 28 + b cos 26), 
(5.4) 

Wa = CO9 28 - b Sin 2fJ 

b = (1 + 3a2x2) / (2~3x3) 

The problem for y is of the form 

ixY -t- BY+ S = 0, 
(5.5) 

(w)r = 1, 
s = p1x, - yX,’ - 

(ix@ + up, cos x + w),, = 0 

BX,’ / (2ix) + (0, @,,‘) 

Q = 2 (w,w, + h &) 

The substitution 

Y = Y, + A / (ix), A = (- 1 / a - ip1 cos x, ix) 

reduces (5.5) to the problem for Y, with homogeneous conditions and the free term 
YP;=:il+s. Solution of that problem exists when <Y-Z) = 0; 

from this we obtain 
1 

(1 + u cos2 x) p1 = - i 
a 
0 

c&’ sin 8 dy - t 
(5.6) 



466 Iu. B. Ponomarenko 

Equations (5.3)-(5.6) show that pr is real, and if in problem (5.1) 1 = 1 the right- 
hand side of (5.6) is decreased by half. 

The coefficient Pa in (1.4) for problem (5.1) proves to be imaginary [2]. In ac- 

cordance with Sect, 4 the steady state solution Q is determined by (1.4) when the qu- 
antities PI,2 are not small, and the solution is stable when h > h, - ~2 . 
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